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x

P R E F A C E

The printing of this book occurs one year short of 60 years since its first edition, 
which was at that time under the sole authorship of William H. Hayt, Jr. In a sense, 
I grew up with the book, having used the second edition in a basic electromagnetics 
course as a college junior. The reputation of the subject matter precedes itself. The 
prospect of taking the first course in electromagnetics was then, as now, a matter 
of dread to many if not most. One professor of mine at Berkeley put it succinctly 
through the rather negative observation that electromagetics is “a test of your ability 
to bend your mind”. But on entering the course and first opening the book, I was 
surprised and relieved to find the friendly writing style and the measured approach 
to the subject. This for me made it a very readable book, out of which I was able to 
learn with little help from my instructor. I referred to the book often while in grad-
uate school, taught from the fourth and fifth editions as a faculty member, and then 
became coauthor for the sixth edition on the retirement (and subsequent untimely 
death) of Bill Hayt. To this day, the memories of my time as a beginner are vivid, and 
in preparing the sixth and subsequent editions, I have tried to maintain the accessible 
style that I found so encouraging and useful then.

Over the 60-year span, the subject matter has not changed, but emphases have. In 
universities, the trend continues toward reducing electrical engineering core course 
allocations to electromagnetics. This is a matter of economy, rather than any belief in 
diminished relevance. Quite the contrary: A knowledge of electromagnetic field the-
ory is in the present day more important than ever for the electrical engineer. Exam-
ples that demonstrate this include the continuing expansion of high-speed wireless 
and optical fiber communication. Additionally, the need continues for ever-smaller 
and denser microcircuitry, in which a command of field theory is essential for suc-
cessful designs. The more traditional applications of electrical power generation and 
distribution remain as important as ever. 

I have made efforts to further improve the presentation in this new edition. Most 
changes occur in the earlier chapters, in which much of the wording has been short-
ened, and several explanations were improved. Additional introductory material has 
been added in several places to provide perspective. In addition, all chapters are now 
subsectioned, to improve the organization and to make topics easier to locate.

Some 100 new end-of-chapter problems have been added throughout, all of which 
replaced older problems that I considered well-worn. For some of these, I chose par-
ticularly good “classic” problems from the earliest editions. I have retained the previous 
system in which the approximate level of difficulty is indicated beside each problem 
on a three-level scale. The lowest level is considered a fairly straightforward problem, 
requiring little work assuming the material is understood; a level 2 problem is con-
ceptually more difficult, and/or may require more work to solve; a level 3 problem is 

hay28159_fm_i_xiv.indd   10 27/11/17   11:26 am



Preface xi

considered either difficult conceptually, or may require extra effort (including possibly 
the help of a computer) to solve.

As in the previous edition, the transmission lines chapter (10) is stand-alone, 
and can be read or covered in any part of a course, including the beginning. In  
it, transmission lines are treated entirely within the context of circuit theory; wave 
phenomena are introduced and used exclusively in the form of voltages and currents. 
Inductance and capacitance concepts are treated as known parameters, and so there is  
no reliance on any other chapter. Field concepts and parameter computation in trans-
mission lines appear in the early part of the waveguides chapter (13), where they play 
additional roles of helping to introduce waveguiding concepts. The chapters on elec-
tromagnetic waves, 11 and 12, retain their independence of transmission line theory 
in that one can progress from Chapter 9 directly to Chapter 11. By doing this, wave 
phenomena are introduced from first principles but within the context of the uniform 
plane wave. Chapter 11 refers to Chapter 10 in places where the latter may give 
additional perspective, along with a little more detail. Nevertheless, all necessary 
material to learn plane waves without previously studying transmission line waves is 
found in Chapter 11, should the student or instructor wish to proceed in that order. 

The antennas chapter covers radiation concepts, building on the retarded po-
tential discussion in Chapter 9. The discussion focuses on the dipole antenna, indi-
vidually and in simple arrays. The last section covers elementary transmit-receive 
systems, again using the dipole as a vehicle. 

The book is designed optimally for a two-semester course. As is evident, statics 
concepts are emphasized and occur first in the presentation, but again Chapter 10 
(transmission lines) can be read first. In a single course that emphasizes dynamics, 
the transmission lines chapter can be covered initially as mentioned or at any point in 
the course. One way to cover the statics material more rapidly is by deemphasizing 
materials properties (assuming these are covered in other courses) and some of the 
advanced topics. This involves omitting Chapter 1 (assigned to be read as a review), 
and omitting Sections 2.5, 2.6, 4.7, 4.8, 5.5–5.7, 6.3, 6.4, 6.7, 7.6, 7.7, 8.5, 8.6, 8.8, 
8.9, and 9.5. 

A supplement to this edition is web-based material consisting of articles on spe-
cial topics in addition to animated demonstrations and interactive programs devel-
oped by Natalya Nikolova of McMaster University and Vikram Jandhyala of the 
University of Washington. Their excellent contributions are geared to the text, and 
icons appear in the margins whenever an exercise that pertains to the narrative exists. 
In addition, quizzes are provided to aid in further study. 

The theme of the text is the same as it has been since the first edition of 1958. 
An inductive approach is used that is consistent with the historical development. In 
it, the experimental laws are presented as individual concepts that are later unified 
in Maxwell’s equations. After the first chapter on vector analysis, additional math-
ematical tools are introduced in the text on an as-needed basis. Throughout every 
edition, as well as this one, the primary goal has been to enable students to learn 
independently. Numerous examples, drill problems (usually having multiple parts), 
end-of-chapter problems, and material on the web site, are provided to facilitate this.  
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Prefacexii

Answers to the drill problems are given below each problem. Answers to 
odd-numbered end-of-chapter problems are found in Appendix F. A solutions man-
ual and a set of PowerPoint slides, containing pertinent figures and equations, are 
available to instructors. These, along with all other material mentioned previously, 
can be accessed on the website: 

www.mhhe.com/haytbuck 

I would like to acknowledge the valuable input of several people who helped to 
make this a better edition. They include: 

Gerald Whitman – New Jersey Institute of Technology
Andrew F. Peterson – Georgia Institute of Technology
M. Chris Wernicki, Ph.D. – NYIT
David Baumann – Lake Superior State University
Jesmin Khan – Tuskegee University
Dr. S. Hossein Mousavinezhad – Idaho State University
Kiyun Han – Wichita State University
Anand Gopinath – University of Minnesota
Donald M. Keller – Point Park University
Argyrios VAronides – University of Scranton
Otsebele Nare – Hampton University
Robert Wayne Scharstein – University of Alabama
Virgil Thomason – University of Tennessee at Chattanooga
Gregory M. Wilkins, Ph.D. – Morgan State University
Mark A. Jerabek – West Virginia University
James Richie – Marquette University
Dean Johnson – Western Michigan
David A. Rogers – North Dakota State University
Tomasz Petelenz – University of Utah
Surendra Singh – The University of Tulsa
Tom Vandervelde – Tufts
John Zwart – Dordt College
Taan ElAli – Embry-Riddle Aeronautical University
R. Clive Woods – Louisiana State University
Jack Adams – Merrimack College

I also acknowledge the feedback and many comments from students, too numerous to 
name, including several who have contacted me from afar. I continue to be open and 
grateful for this feedback and can be reached at john.buck@ece.gatech.edu. Many 
suggestions were made that I considered constructive and actionable. I regret that 
not all could be incorporated because of time restrictions. Creating this book was 
a team effort, involving several outstanding people at McGraw-Hill. These include 
my editors, Raghu Srinivasan and Tomm Scaife, whose vision and encouragement 
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were invaluable. Jenilynn McAtee and Lora Neyens deftly coordinated the production 
phase with excellent ideas and enthusiasm, and Tina Bower, who was my guide and 
conscience from the beginning, providing valuable insights, and jarring me into ac-
tion when necessary. I am, as usual in these projects, grateful to a patient and sup-
portive family.

John A. Buck 
Marietta, Georgia 

May, 2017 
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1

C H A P T E R 

Vector Analysis

V ector analysis is a subject that is better taught by mathematicians than by 
engineers. Most junior and senior engineering students have not had the time 
(or the inclination) to take a course in vector analysis, although it is likely that 

vector concepts and operations were introduced in the calculus courses. These are cov-
ered in this chapter, and the time devoted to them now should depend on past exposure.

The viewpoint here is that of the engineer or physicist and not that of the math-
ematician. Proofs are indicated rather than rigorously expounded, and physical inter-
pretation is stressed. It is easier for engineers to take a more rigorous course in the 
mathematics department after they have been presented with a few physical pictures 
and applications.

Vector analysis is a mathematical shorthand. It has some new symbols and some 
new rules, and it demands concentration and practice. The drill problems, first found 
at the end of Section 1.4, should be considered part of the text and should all be 
worked. They should not prove to be difficult if the material in the accompanying 
section of the text has been thoroughly understood. ■

1.1 SCALARS AND VECTORS
The term scalar refers to a quantity whose value may be represented by a single (pos-
itive or negative) real number. The x, y, and z we use in basic algebra are scalars, as 
are the quantities they represent. If we speak of a body falling a distance L in a time 
t, or the temperature T at any point whose coordinates are x, y, and z, then L, t, T, x,
y, and z are all scalars. Other scalar quantities are mass, density, pressure (but not 
force), volume, volume resistivity, and voltage.

A vector quantity has both a magnitude1 and a direction in space. We are con-
cerned with two- and three-dimensional spaces only, but vectors may be defined in 

1

1 We adopt the convention that magnitude infers absolute value; the magnitude of any quantity is 
 therefore always positive.
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E N G I N E E R I N G  E L E C T R O M AG N E T I C S2

n-dimensional space in more advanced applications. Force, velocity, acceleration, 
and a straight line from the positive to the negative terminal of a storage battery 
are examples of vectors. Each quantity is characterized by both a magnitude and a 
direction.

Our work will mainly concern scalar and vector fields. A field (scalar or vector) 
may be defined mathematically as some function that connects an arbitrary origin to 
a general point in space. We usually associate some physical effect with a field, such 
as the force on a compass needle in the earth’s magnetic field, or the movement of 
smoke particles in the field defined by the vector velocity of air in some region of 
space. Note that the field concept invariably is related to a region. Some quantity is 
defined at every point in a region. Both scalar fields and vector fields exist. The tem-
perature and the density at any point in the earth are examples of scalar fields. The 
gravitational and magnetic fields of the earth, the voltage gradient in a cable, and the 
temperature gradient in a soldering-iron tip are examples of vector fields. The value 
of a field varies in general with both position and time.

In this book, as in most others using vector notation, vectors will be indicated 
by boldface type, for example, A. Scalars are printed in italic type, for example, A. 
When writing longhand, it is customary to draw a line or an arrow over a vector quan-
tity to show its vector character. (CAUTION: This is the first pitfall. Sloppy notation, 
such as the omission of the line or arrow symbol for a vector, is the major cause of 
errors in vector analysis.)

1.2 VECTOR ALGEBRA
In this section, the rules of vector arithmetic, vector algebra, and (later) vector calcu-
lus are defined. Some of the rules will be similar to those of scalar algebra, some will 
differ slightly, and some will be entirely new.

1.2.1 Addition and Subtraction

The addition of vectors follows the parallelogram law. Figure 1.1 shows the sum of 
two vectors, A and B. It is easily seen that A + B = B + A, or that vector addition 
obeys the commutative law. Vector addition also obeys the associative law,

A + (B + C) = (A + B) + C

Note that when a vector is drawn as an arrow of finite length, its location is de-
fined to be at the tail end of the arrow.

Coplanar vectors are vectors lying in a common plane, such as those shown in 
Figure 1.1. Both lie in the plane of the paper and may be added by expressing each 
vector in terms of “horizontal” and “vertical” components and then adding the cor-
responding components.

Vectors in three dimensions may likewise be added by expressing the vectors 
in terms of three components and adding the corresponding components. Examples 
of this process of addition will be given after vector components are discussed in 
Section 1.4.

hay28159_ch01_001-025.indd   2 27/11/17   11:29 am



C H A P T E R  1  Vector Analysis 3

The rule for the subtraction of vectors follows easily from that for addition, for 
we may always express A − B as A + (−B); the sign, or direction, of the second vec-
tor is reversed, and this vector is then added to the first by the rule for vector addition.

1.2.2 Multiplication and Division

Vectors may be multiplied by scalars. The magnitude of the vector changes, but its 
direction does not when the scalar is positive, although it reverses direction when 
multiplied by a negative scalar. Multiplication of a vector by a scalar also obeys the 
associative and distributive laws of algebra, leading to

(r + s) (A + B) = r(A + B) + s(A + B) = rA + rB + sA + sB

Division of a vector by a scalar is merely multiplication by the reciprocal of that 
scalar. The multiplication of a vector by a vector is discussed in Sections 1.6 and 1.7. 
Two vectors are said to be equal if their difference is zero, or A = B if A − B = 0.

In our use of vector fields we always add and subtract vectors that are defined at 
the same point. For example, the total magnetic field about a small horseshoe magnet 
will be shown to be the sum of the fields produced by the earth and the permanent 
magnet; the total field at any point is the sum of the individual fields at that point.

1.3 THE RECTANGULAR COORDINATE SYSTEM
To describe a vector accurately, some specific lengths, directions, angles, projec-
tions, or components must be given. There are three simple coordinate systems by 
which this is done, and about eight or ten other systems that are useful in very special 
cases. We are going to use only the three simple systems, the simplest of which is the 
rectangular, or rectangular cartesian, coordinate system.

1.3.1 Right-Handed Coordinate Systems

In the rectangular coordinate system we set up three coordinate axes mutually at 
right angles to each other and call them the x, y, and z axes. It is customary to choose 
a right-handed coordinate system, in which a rotation (through the smaller angle) 
of the x axis into the y axis would cause a right-handed screw to progress in the 
direction of the z axis. If the right hand is used, then the thumb, forefinger, and 

B

A + B A + BA

B

A

Figure 1.1  Two vectors may be added graphically either by 
drawing both vectors from a common origin and completing the 
parallelogram or by beginning the second vector from the head of 
the first and completing the triangle; either method is easily extended 
to three or more vectors.
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E N G I N E E R I N G  E L E C T R O M AG N E T I C S4

middle finger may be identified, respectively, as the x, y, and z axes. Figure 1.2a 
shows a right-handed rectangular coordinate system. A point is located by giving 
its x, y, and z coordinates. These are, respectively, the distances from the origin to 
the intersection of perpendicular lines dropped from the point to the x, y, and z axes.

1.3.2 Point Locations as Intersections of Planes

An alternative method of interpreting coordinate values, which must be used in all 
other coordinate systems, is to consider a point as being at the common intersec-
tion of three surfaces. In rectangular coordinates, these are the planes x = constant,  
y = constant, and z = constant, where the constants are the coordinate values of 
the point.

Figure 1.2b shows points P and Q whose coordinates are (1, 2, 3) and (2, −2, 1), 
respectively. Point P is therefore located at the common point of intersection of the 

Figure 1.2  (a) A right-handed rectangular coordinate system. If the curved fingers of the 
right hand indicate the direction through which the x axis is turned into coincidence with the 
y axis, the thumb shows the direction of the z axis. (b) The location of points P(1, 2, 3) and 
Q(2, −2, 1). (c) The differential volume element in rectangular coordinates; dx, dy, and dz 
are, in general, independent differentials.

Origin
y = 0 plane

z = 0 plane

P(1, 2, 3)
P'

Volume = dx dy dz

dx dy

dx dzdy dz

dy
dx

dz

Q(2, –2, 1)

(a)

(b) (c)

x = 0 plane

z

zz

x

x

y

y

y

x
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C H A P T E R  1  Vector Analysis 5

planes x = 1, y = 2, and z = 3, whereas point Q is located at the intersection of the 
planes x = 2, y = −2, and z = 1.

In other coordinate systems, as discussed in Sections 1.8 and 1.9, we expect 
points to be located at the common intersection of three surfaces, not necessarily 
planes, but still mutually perpendicular at the point of intersection.

If we visualize three planes intersecting at the general point P, whose coordinates 
are x, y, and z, we may increase each coordinate value by a differential amount and 
obtain three slightly displaced planes intersecting at point P′, whose coordinates are 
x + dx, y + dy, and z + dz. The six planes define a rectangular parallelepiped whose 
volume is dv = dxdydz; the surfaces have differential areas dS of dxdy, dydz, and 
dzdx. Finally, the distance dL from P to P′ is the diagonal of the parallelepiped and
has a length of  √ 

________________
   (dx)   2  +  (dy)   2  +  (dz)   2   . The volume element is shown in Figure 1.2c;

point P′ is indicated, but point P is located at the only invisible corner.
All this is familiar from trigonometry or solid geometry and as yet involves only sca-

lar quantities. We will describe vectors in terms of a coordinate system in the next section.

1.4  VECTOR COMPONENTS 
AND UNIT VECTORS

To describe a vector in the rectangular coordinate system, first consider a vector r 
extending outward from the origin. A logical way to identify this vector is by giving 
the three component vectors, lying along the three coordinate axes, whose vector 
sum must be the given vector. If the component vectors of the vector r are x, y, and 
z, then r = x + y + z. The component vectors are shown in Figure 1.3a. Instead of 
one vector, we now have three, but this is a step forward because the three vectors 
are of a very simple nature; each is always directed along one of the coordinate axes.

The component vectors in Figure 1.3 have magnitudes that depend on the given 
vector (such as r), but they each have a known and constant direction. This suggests 
the use of unit vectors having unit magnitude by definition; these are parallel to the 
coordinate axes and they point in the direction of increasing coordinate values. We 
reserve the symbol a for a unit vector and identify its direction by an appropriate sub-
script. Thus ax, ay, and az are the unit vectors in the rectangular coordinate system.2 
They are directed along the x, y, and z axes, respectively, as shown in Figure 1.3b.

If the component vector y happens to be two units in magnitude and directed 
toward increasing values of y, we then write y = 2ay. A vector rP pointing from the 
origin to point P(1, 2, 3) is written rP = ax + 2ay + 3az. The vector from P to Q is 
obtained by applying the rule of vector addition. This rule shows that the vector from 
the origin to P plus the vector from P to Q is equal to the vector from the origin to Q. 
The desired vector from P(1, 2, 3) to Q(2, −2, 1) is therefore

RPQ = rQ − rP = (2 − 1) ax + (−2 − 2) ay + (1 − 3) az

= ax − 4 ay − 2 az

The vectors rP, rQ, and RPQ are shown in Figure 1.3c.

2 The symbols i, j, and k are also commonly used for the unit vectors in rectangular coordinates.
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The last vector does not extend outward from the origin, as did the vector r we 
initially considered. However, we have already learned that vectors having the same 
magnitude and pointing in the same direction are equal, so we see that to help our 
visualization processes we are at liberty to slide any vector over to the origin before 
determining its component vectors. Parallelism must, of course, be maintained dur-
ing the sliding process.

In discussing a force vector F, or any vector other than a displacement-type 
vector such as r, the problem arises of providing suitable letters for the three compo-
nent vectors. It would not do to call them x, y, and z, for these are displacements, or 
directed distances, and are measured in meters (abbreviated m) or some other unit of 
length. The problem is most often avoided by using component scalars, simply called 
components, Fx,Fy, and Fz. The components are the signed magnitudes of the com-
ponent vectors. We may then write F = Fxax + Fyay + Fzaz. The component vectors 
are Fxax, Fyay, and Fzaz.

Figure 1.3 (a) The component vectors x, y, and z of vector r. (b) The unit vectors of the 
rectangular coordinate system have unit magnitude and are directed toward increasing val-
ues of their respective variables. (c) The vector RPQ is equal to the vector difference rQ − rP.
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hay28159_ch01_001-025.indd   6 27/11/17   11:29 am



C H A P T E R  1  Vector Analysis 7

Any vector B then may be described by B = Bxax + Byay + Bzaz. The magnitude 
of B written |B| or simply B, is given by

 ∣B∣ =  √ 
___________

   B  x  2  +  B  y  2  +  B  z  2  (1)

  Each of the three coordinate systems we discuss will have its three fundamental and 
mutually perpendicular unit vectors that are used to resolve any vector into its com-
ponent vectors. Unit vectors are not limited to this application. It is helpful to write a 
unit vector having a specified direction. This is easily done, for a unit vector in a given 
direction is merely a vector in that direction divided by its magnitude. A unit vector in 
the r direction is r /  √ 

_________
  x   2  +  y   2  +  z   2   , and a unit vector in the direction of the vector B is

 a  B   =   B ___________  
 √ 

___________
   B  x  2  +  B  y  2  +  B  z  2   
=   B _

 |  B | (2)

Specify the unit vector extending from the origin toward the point G(2, −2, −1).
Solution. We first construct the vector extending from the origin to point G,

G = 2ax – 2ay – az

We continue by finding the magnitude of G,

|G | =  √ 
________________

   (2)   2  +  (− 2)   2  +  (− 1)   2    = 3

and finally expressing the desired unit vector as the quotient,

 a  G   =   G ___ 
 |  G |  

   =   2 __ 3    a  x   −   2 __ 3    a  y   −   1 __ 3    a  z   = 0.667  a  x   − 0.667  a  y   − 0.333  a  z
A special symbol is desirable for a unit vector so that its character is immediately 

apparent. Symbols that have been used are uB, aB, 1B, or even b. We will consistently 
use the lowercase a with an appropriate subscript.

[NOTE: Throughout the text, drill problems appear following sections in which a 
new principle is introduced in order to allow students to test their understanding of the 
basic fact itself. The problems are useful in gaining familiarity with new terms and ideas 
and should all be worked. More general problems appear at the ends of the chapters. The 
answers to the drill problems are given in the same order as the parts of the problem.]

EXAMPLE 1 .1

D1.1. Given points M(−1, 2, 1), N(3, −3, 0), and P(−2, −3, −4), find:  
(a) RMN; (b) RMN + RMP; (c) ∣rM∣; (d) aMP; (e) ∣2rP – 3rN∣.

Ans. (a) 4ax – 5ay – az; (b) 3ax – 10ay – 6az; (c) 2.45; (d) –0.14ax – 0.7ay – 0.7az; (e) 15.56
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1.5 THE VECTOR FIELD
We have defined a vector field as a vector function of a position vector. In general, 
the magnitude and direction of the function will change as we move throughout the 
region, and the value of the vector function must be determined using the coordinate 
values of the point in question. In the rectangular coordinate system, the vector will 
be a function of the variables x, y, and z.

Again, representing the position vector as r, a vector field G can be expressed in 
functional notation as G(r); a scalar field T is written as T(r).

If we inspect the velocity of the water in the ocean in some region near the surface 
where tides and currents are important, we might decide to represent it by a velocity 
vector that is in any direction, even up or down. If the z axis is taken as upward, the  
x axis in a northerly direction, the y axis to the west, and the origin at the surface, we 
have a right-handed coordinate system and may write the velocity vector as v = vxax + 
vyay + vzaz, or v(r) = vx(r)ax + vy(r)ay + vz(r)az; each of the components vx, vy, and vz 
may be a function of the three variables x, y, and z. If we are in some portion of the Gulf 
Stream where the water is moving only to the north, then vy and vz are zero. Further 
simplifying assumptions might be made if the velocity falls off with depth and changes 
very slowly as we move north, south, east, or west. A suitable expression could be  
v = 2ez /100ax. We have a velocity of 2 m/s (meters per second) at the surface and a 
velocity of 0.368 × 2, or 0.736 m/s, at a depth of 100 m (z = −100). The velocity con-
tinues to decrease with depth while maintaining a constant direction. 

1.6 THE DOT PRODUCT
The dot product (or scalar product) is used to multiply a given vector field by the compo-
nent of another field that is parallel to the first. This gives the same result when the roles 
of the fields are reversed. In that sense, the dot product is a projection operation, which 
can be used to obtain the magnitude of a given field in a specific direction in space.

1.6.1 Geometric Definition

Given two vectors A and B, the dot product is geometrically defined as the product of 
the magnitude of A, the magnitude of B, and the cosine of the smaller angle between 
them, thus projecting one field onto the other:

 A · B =  |  A |   |  B |   cos  θ  AB (3)

D1.2. A vector field S is expressed in rectangular coordinates as S = 
{ 125/[(x − 1)2 + (y − 2)2 + (z + 1)2]}{(x − 1)ax + (y − 2)ay + (z + 1)az}.  
(a) Evaluate S at P(2, 4, 3). (b) Determine a unit vector that gives the  
direction of S at P. (c) Specify the surface f (x, y, z) on which |S| = 1.

Ans. (a) 5.95ax + 11.90ay + 23.8az; (b) 0.218ax + 0.436ay + 0.873az; 
(c)   √ 

______________________
   (x – 1)2 + (y – 2)2 + (z + 1)2    = 125
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The dot appears between the two vectors and should be made heavy for emphasis. 
The dot, or scalar, product is a scalar, as one of the names implies, and it obeys the 
commutative law,

 A · B = B · A (4)

for the sign of the angle does not affect the cosine term. The expression A · B is read 
“A dot B.”

A common application of the dot product is in mechanics, where a constant force 
F applied over a straight displacement L does an amount of work FL cos θ, which is 
more easily written F · L. If the force varies along the path, integration is necessary 
to find the total work (as is taken up in Chapter 4), and the result becomes

Work = ∫ F · dL

Another example occurs in magnetic fields. The total flux Φ crossing a surface 
of area S is given by BS if the magnetic flux density B is perpendicular to the surface 
and uniform over it. We define a vector surface S as having area for its magnitude 
and having a direction normal to the surface (avoiding for the moment the problem 
of which of the two possible normals to take). The flux crossing the surface is then  
B · S. This expression is valid for any direction of the uniform magnetic flux density.  
If the flux density is not constant over the surface, the total flux is Φ = ∫  B · d S.
Integrals of this general form appear in Chapter 3  in the context of electric  
flux density.

1.6.2 Operational Definition

Finding the angle between two vectors in three-dimensional space is often a 
job we would prefer to avoid, and for that reason the definition of the dot 
product is usually not used in its basic form. A more helpful result is obtained  
by considering two vectors whose rectangular components are given, such as  
A = Axax + Ayay + Azaz and B = Bxax + Byay + Bzaz. The dot product also 
obeys the distributive law, and, therefore, A · B yields the sum of nine scalar 
terms, each involving the dot product of two unit vectors. Because the an-
gle between two different unit vectors of the rectangular coordinate system is  
90°, we then have

ax · ay = ay · ax = ax · az = az · ax = ay · az = az · ay = 0

The remaining three terms involve the dot product of a unit vector with itself, which 
is unity, giving finally the operational definition:

 A · B =  A  x    B  x   +  A  y    B  y   +  A  z    B  z   (5)

which is an expression involving no angles.
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